

Hum	ans and traffic UNIVERSITY OF	LEEDS
Human Factors	Humans evolved for walking	
Driver characteristics	Not for :	
Driver behaviour	moving at high speeds	
Measurements In-depth study	controlling technology	
	However, evolution made humans fit for:	
	adapting	
4	learning	IT\$

Human Factors			UNIVERSITY OF LEEDS		
Human Factors					
Driver characteristics	۶	Perception: vision, hearing etc.	>	Attention and distraction	
Driver	≻	Information processing	\triangleright	Situation awareness	
behaviour	۶	Memory	Þ	Automation	
Measurements	>	Personality traits	۶	Errors	
In-depth study	≻	Age and gender	۶	Fatigue	
	≻	Motivation	≻	Disabilities	
	۶	Trust	≻	Mental and physical	
	≻	Stress		state	
	>	Workload	>	Use of alcohol, drugs and medicines	
7				ITS	

Road	UNIVERSITY OF LEEDS
Human Factors Driver characteristics	Demographic characteristics: gender, age, country, educational level, income, socio-cultural background, life and living situation
Driver behaviour Measurements	Personality traits and physical characteristics: sensation seeking, locus of control, cognitive skills, physical impairments or weaknesses
In-depth study	Attitudes and intentions: attitudes towards speeding, safety, environment, technology
	Experience, and traffic participation and motivation: experience in years and in mileage, professional, tourist, with or without company
8	IT\$

Perse	onality: Sensation seeking UNIVERSITY OF LEEDS
Human Factors Driver characteristics	a trait defined by the seeking of varied, novel, complex, and intense sensations and experiences and the willingness to take physical, social, legal, and financial risks for the sake of such experiences (Zuckerman, 1994 p. 27).
Driver behaviour	SS test factors:
Measurements In-depth study	 Thrill and adventure seeking: strongest relation with risky driving
	Experience seeking
	Boredom susceptibility
	Disinhibition
10	http://www.bbc.co.uk/science/humanbody/mind/surveys/sensation/

Exar	nples of possible ITS solutions	F LEEDS
Human Factors	Will problems:	
	Alco-lock	
Driver characteristics	Intelligent Speed Adaptation	
Driver		
Denavioui	Skill problems:	
Measurements	Collision warning	
In-depth study	Intersection warning	
	Lane departure warning	
	 Systems providing video-supported rear view (e.g. vision enhancement system) 	
	Cooperative systems taking over in risky situations	
¹⁷ Ris	sser, R., & Spyropoulou, I. (2011)	IT\$

Hum	an Errors University o	F LEEDS
Human Factors	(Reason et al., 1990):	
Driver characteristics Driver	 Slips and lapses – deviating from the intended action without being aware o 	f it
behaviour Measurements	 Mistakes – the planned action is wron one intended to follow the rules 	g but
In-depth study	 Violations – the planned action is deliberately against the rules 	
	Fatigue leads to increases in (1) and (2)	
20	Alcohol produces all 3 as well as reduced capacity	IT\$

The	Spare Capacity Model UNIVERSITY OF LEEDS
Human Factors Driver characteristics	Each person has a certain mental capacity. When a road user's capacity is exceeded, that person will make mistakes.
Driver behaviour	Capacity is used up in:
Measurements In-depth study	 The various levels of the driving task, e.g. controlling the vehicle (steering, changing gear, braking, etc.)
	 The sequence: perceive → judge → decide
	(situational awareness)
25	 Any secondary tasks that the driver is engaged in, e.g. using a mobile phone, changing CDs

How to	study the dr	iving task	UNIVERSITY OF	LEEDS
Human				
	Task Level	Behaviour	Examples of Study Methods	
Driver characteristics	Strategic	Knowledge Based	Observation, Survey	
Driver behaviour	Manoeuvre	Rule Based	Verbal Protocols, Interviews, Questionnaires, Observations, etc.	
In-depth study	Control	Skill Based	Eye Movements, Control Movements, Speed, Headways, etc.	
	Autonomic	Reactive	ECG (Electro CardioGram), GSR (Galvanic Skin Response), Heart Rate Variability, etc.	
29				IT\$

Visua			
Human Factors	Distribution of glance patterns		
Driver characteristics	 road ahead 		
Driver	 dashboard 		
behaviour	 mirrors (interior, left, right) 		
Measurements	 system display 		
In-depth study	Number of glances		
	Average length of glance		
	Duration of maximum glance		
	Total glance time		
32		ITS	

Metrics for Situation Awareness UNIVERSITY OF LEED	
Human Factors	SART (Situation Awareness Rating Technique):
Driver characteristics	 subjective rating method for quantifying situation awareness
Driver behaviour	 uses post-hoc ratings by operators of perceived task demand, attentional resources, and comprehension
In-depth study	SAGAT (Situation Awareness Global Assessment Technique)
	 direct query of SA in simulated tasks by freezing the simulation and obtaining answers from operators to probe questions (e.g. recall of location, objects in scene)
33	ITS

Sub	ojective opinion	ELEEDS
Human Factors Driver characteristics Driver behaviour	Ask the opinion of the user: Before the drive: e.g. questionnaires on personal data, tests on knowledge, technology acceptance	
Measurements In-depth study	During the drive: e.g. indications on workload scale, rating of difficulty of task, think aloud protocols	
	After the drive: e.g. interview and feedback, test of acceptance and perceived functionality of systems	
37		IT≶

Drive	
Human Factors	At the top (immediate) level, the most common failures for "non-innocent" drivers and riders were:
Driver characteristics	• Failure to yield (16%)
Driver	Loss of control (7%)
behaviour	 Manoeuvre problems (mainly inappropriate overtaking) (4%)
Measurements	Failure to stop (2%)
In-depth study	At the explanatory level:
	Perceptual error (16%)
	Cognitive (judgement) error (12%)
	Unable to see (12%)
	Lack of skills (3%)
40	• Attitude (2%)

MAIDS : Motorcycle A Powered Two-Wheele vas conducted during countries using the http://www.maids-stud	Accidents ers (PTW g 3 years OECD co dy.eu/ind	In Depth s) accide on 921 a ommon re ex.html	n Study o ents in E accidents esearch	on urope. Ti s from methodo	he invest	tigation	
mary contributing factor -	1						
		I CONTRACTOR		13		PTW	
Human PTW rider		96	N	96	N	96	
eption failure	59	44.0	30	29.7	89	37.9	
prehension failure	10	7.5	15	14.9	25	10.6	
ision failure	46	34.3	30	29.7	76	32.3	
ction failure	14	10.4	19	18.8	33	14.0	
iding a different collision	2	1.5	2	2.0	4	1.7	
ure of unknown type	3	2.2	5	5.0	8	3.4	
d .	134	100.0	101	100.0	235	100.0	
	eption failure sprehension failure ision failure otion failure iding a different collision ure of unknown type al S - In-Depth Investigation o acturers (ACEM), 2009, ww	Seption failure 59 sprehension failure 10 ision failure 46 ction failure 14 iding a different collision 2 ure of unknown type 3 al 134 S - In-Depth Investigation of Motorcycle acturers (ACEM), 2009, www.esum.eu	Seption failure 59 44.0 sprehension failure 10 7.5 is ion failure 46 34.3 ction failure 14 10.4 iding a different collision 2 1.5 ure of unknown type 3 2.2 al 134 100.0 S - In-Depth Investigation of Motorcycle Accidents acturers (ACEM), 2009, www.esum.eu/files/ap/M/	Seption failure 59 44.0 30 sprehension failure 10 7.5 15 is ion failure 46 34.3 30 ction failure 46 34.3 30 ction failure 14 10.4 19 iding a different collision 2 1.5 2 ure of unknown type 3 2.2 5 al 134 100.0 101 S - In-Depth Investigation of Motorcycle Accidents, The Asso acturers (ACEM), 2009, www.esum.eu/files/ap/MAIDS_Urba 400.0	Seption failure 59 44.0 30 29.7 sprehension failure 10 7.5 15 14.9 is ion failure 46 34.3 30 29.7 ction failure 46 34.3 30 29.7 ction failure 14 10.4 19 18.8 iding a different collision 2 1.5 2 2.0 Jre of unknown type 3 2.2 5 5.0 al 134 100.0 101 100.0 S - In-Depth Investigation of Motorcycle Accidents, The Association of Eacturers (ACEM), 2009, www.esum.eu/files/ap/MAIDS_Urban_Acciden	Seption failure 59 44.0 30 29.7 89 uprehension failure 10 7.5 15 14.9 25 is ion failure 46 34.3 30 29.7 76 ction failure 46 34.3 30 29.7 76 ction failure 14 10.4 19 18.8 33 iding a different collision 2 1.5 2 2.0 4 ure of unknown type 3 2.2 5 5.0 8 al 134 100.0 101 100.0 235	

Urbar	accidents motorcycles			UNI	VERSIT	Y OF L	EEDS
Human Factors	Accidents caused by	driver	s of oth	ner veh	nicles		
Driver characteristics	Primary contributing factor - Human OV driver	L1		L3		PTW	
		N	96	N	96	N	%
Driver	Perception failure	133	80.1	127	71.3	260	75.6
behaviour	Comprehension failure	6	3.6	4	2.2	10	2.9
	Decision failure	25	15.1	43	24.2	68	19.8
Measurements	Reaction failure	1	0.6	1	0.6	2	0.6
In-depth study	OV post-crash motions from a prior collision	0	0.0	2	1.1	2	0.6
in deparotedy	other vehicle avoiding a different collision	0	0.0	1	0.6	1	0.3
	other vehicle driver failure, unknown type	1	0.6	0	0.0	1	0.3
	Total	166	100.0	178	100.0	344	100.0
							TS

Refe	rences University of Leeds
Human	Ajzen, I. (1988). Attitudes, personality, and behaviour. Buckingham: Open University Press.
Factors	Barnard, Y., Risser, R. & Krems, J. (2011). Safety of Intelligent Driver Support Systems: Design, Evaluation, and Social perspectives. Franham: Ashgate Publishers
Driver	Carsten, O.M.J., Tight, M.R., Southwell M.T., & Plows, B. (1989). Urban Accidents: Why do they Happen?, AA Foundation for Road Safety Research.
CHARACLEHS(ICS	Endsley, M.R. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors, 37(1): 65- 84.
Driver behaviour	Elslande, P. van, Naing. C., & Engel, R. (2008) Analyzing Human Factors in road accident TRACE D5.5, Project No. 027763 – TRACE, University of Loughborough
Measurements	Michon, J.A. (1979). Dealing with danger. Summary report of a workshop in the Traffic Research Centre, State University, Groningen.
In-depth study	OECD/ECMT report (2006). Young Drivers. The Road to Safety. Paris, France. http://www.internationaltransportforum.org/jtrc/safety/YoungDrivers.html
	Reason, J., Manstead, A. S. R., Stradling, S. G., Baxter, J. S. and Campbell, K. (1990). Errors and violations on the road: a real distinction? Ergonomics, 33, 1315-1332.
	Risser, R., & Spyropoulou I. (2011). Safety according to IDSS functions and to different driver types. In: Y. Barnard, R. Risser, and J. Krems (Eds.) Safety of Intelligent Driver Support Systems: Design, Evaluation, and Social perspectives. Franham: Ashgate Publishers
	Rotter, J. B. (1966). Generalised expectancies for internal versus external control of reinforcement. Psychological Monographs, 80 (I Whole. 609).
	Wells, P., Tong, S., Sexton, B., Grayson, G. & Jones, E. (2008). Cohort II Study of learner and new drivers (Volume 1). Road Safety Research Report 81. London: Department for Transport.
43	Zuckerman, M. (1994). Behavioral Expressions and Biosocial Bases of Sensation Seeking. Cambridge University Press.

